N> Kasadara

Observability in LLM
Applications

LangSmith & OpenTelemetry

I Chinnasa my

N> Kasadara

Blind Spots in LLM Observability

®© O

OPAQUE DECISION LB TOOL INVOCATION NO INSIGHTS INTO

PROMPT AND
PATHS RESPONSE FLOW IS HIDDEN ERROR

Failures an
LLMs don't explain Inputs, intermediate External tools used . ailures and
. : incorrect responses
why they chose a steps, and outputs in chains or agents .
: - are difficult to trace
specific output. often go unlogged. lack visibility.

or evaluate.

‘a\

()

4

OpenTelemetry }X

N> Kasadara

WHY OpenTelemetry and LangSmith

OpenTelemetry

OpenTelemetry — Unified
Observability

Open standard for collecting traces,
metrics, and logs

Vendor-neutral — no vendor lock-in
Enables end-to-end visibility across
distributed systems

Supported by major cloud platforms
(AWS, Azure, GCP)

LangSmith — LLM
Debugging & Evaluation

Purpose-built for LLM application
tracing and evaluation

Integrates with OpenTelemetry to
track LangChain workflows

Offers fine-grained insight into
prompts, model responses, and tool
usage

Facilitates prompt engineering,
performance tuning, and error
analysis

N> Kasadara

PLANNING

Modern applications are
becoming increasingly
distributed — spanning across
microservices, APls, and
third-party tools.

Q‘%\

OpenTelemetry

OpenTelemetry

METHOD

Traditional observability
relies on fragmented logs
and isolated tools.

EE

CRITERIA

A modern observability solution

must:
[

Capture logs, metrics, and
traces

Be language-agnostic and
vendor-neutral

Work seamlessly in
distributed & GenAl
architectures

Q‘%\

OpenTelemetry

An open-source observability
framework providing a unified
approach to collect, process, and
export telemetry data — enabling
full visibility across your application
stack.

N> Kasadara

OpenTelemetr

y Setup

C:\Users\Asus\Downloads\opentelemetry-movies—-microservices—main>docker run -d -p 9411:9411 openzipkin/zipkin
6097U5f29fale5511dc6a230U6ae0c0339378901cdfl7acee3e52a619c867738

Creation of docker container

S C:\Users\Asus\development\opentelemetry> npm install @opentelemetry/api@"1.8.0
>> @opentelemetry/auto-instrumentations-node@"0.45.0 '
>> @opentelemetry/exporter-metrics-otlp-proto@"0.51.0
>> @opentelemetry/exporter—trace-otlp-proto@"0.51.0 °
>> @opentelemetry/sdk-metrics@"1.24.0 °
>> @opentelemetry/sdk-node@"0.51.0 °
>> @opentelemetry/sdk-trace-node@"1.24.0
> express@"d.19.2

N

/Install of all necessary packages:\

Opentelemetry api

npm warn ERESOLVE overriding peer dependency

npm warn deprecated acorn-import-assertions@1.9.0: package has been renamed to acorn-import-attributes

npm warn deprecated @opentelemetry/plugin-https@0.16.0: Deprecated in favor of @opentelemetry/instrumentation-http

npm warn deprecated @opentelemetry/plugin-http@0.16.0: Deprecated in favor of @opentelemetry/instrumentation-http

npm warn deprecated @opentelemetry/node@®.16.0: Package renamed to @opentelemetry/sdk-trace-node

npm warn deprecated @opentelemetry/tracing@0.16.0: Package renamed to @opentelemetry/sdk-trace-base

npm warn deprecated @opentelemetry/plugin-express@0.13.1: Deprecated in favor of @opentelemetry/instrumentation-express
npm warn deprecated @opentelemetry/api-metrics@0.24.0: Please use @opentelemetry/api >= 1.3.0

npm warn deprecated @opentelemetry/metrics@0.24.0: Package renamed to @opentelemetry/sdk-metrics-base

added 374 packages, and audited 375 packages in 30s

20 packages are looking for funding
run ‘npm fund' for details

6 vulnerabilities (3 low, 3 high)

exporter - otlp
Sdk - metrics

Trace - node
k J

i‘gk}

OpenTelemetry

N> Kasadara

Instrumentation

Code is wrapped to
emit telemetry data

Q‘%\

OpenTelemetry

Data Capture Processing

Collector enriches,
batches, and routes

Spans, logs, metrics
collected at runtime

OpenTelemetry Workflow

@

&

o o
Exporting Monitoring
Data sent to You observe flows,
backend tools errors, and latencies

How OpenTelemetry Captures System context

OpenTelemetry SDKs hook into frameworks (e.g., HTTP, gRPC, DB) and
automatically attach system metadata to each span.

DARING

Each request/operation carries context (like trace ID, user/session data) via
HTTP headers (W3C Trace Context). This ensures continuity across
microservices.

The OpenTelemetry Collector can be configured to inject additional
metadata, such as host info, region, or deployment environment.

CONCLUSION

Developers can manually add custom key-value pairs to spans/logs (e.qg.,
prompt_id, user_type, agent_name) for LLM-specific context.

Ope:TeIemetry (9 Kasadara

> Kasadara . .
Implementation of OTel on projects

COMBINING MODEL WITH METRICS

THE OTEL Monitor resource usage and
Enable context tracking between model performance
services and model calls

01.9/20.\9/%0.

SETTING UP TRACING ANALYSIS TOOLS

Prepare your project and Track model inference and
environment system behavior

Visualize and analyze with
observability platforms

Q‘%\

OpenTelemetry

N> Kasadara

Work Flow of Tracing using OTel

[Throws the result] [file ssd]

A

Y

[Traces]<—[zapkins server]

Docker

OpenTelemetry

Docker runs Zapkins to collect
trace data.

Zapkins server receives and
manages trace data.

Trace data is stored on file SSD

(local storage).

Traces module gets data from
Zapkins server.

Finally, it throws the result
(outputs the processed trace).

N> Kasadara
W

l Short-lived
jobs

push ﬁ\e’(rls
atexit

Pushgateway

| Jobs/
exporters

Prometheus
targets

. pagerduty

O

Service discovery Prometheus
alerting
©) kubernetes file_sd
diso;rver
targets
Prometheus server i
push
alerts
------- [Retrieval]‘[TSDB }{ :E:]
PromQL

Prometheus
web Ul

Node HDD/SSD

Grafana

15

Alertmanager [

Data
visualization
and export

Q‘%\

OpenTelemetry

ork Flow of Metric using OTel

Prometheus Server: Pulls metrics from targets,
stores them in TSDB, and exposes them via HTTP
API.

Targets (Jobs/Exporters): Provide metrics over
HTTP; Prometheus scrapes them at intervals.

Pushgateway: Allows short-lived jobs to push
metrics; Prometheus pulls from Pushgateway.

Service Discovery: Auto-discovers targets using
integrations like Kubernetes and file_sd.

Alertmanager: Receives alerts from Prometheus,
manages routing, deduplication, and sends
notifications (e.g., PagerDuty, Email).

PromQL: Query language for selecting and
aggregating time series data.

N> Kasadara

Tracing the Model

‘use strict’;

{ LogLevel } = require("@opentelemetry/core™);

{ NodeTracerProvider } = require("@opentelemetry/node");

{ SimpleSpanProcessor } = require(“"@opentelemetry/tracing”);

{ zipkinkExporter } = require("@opentelemetry/exporter-zipkin");

const provider = new NodeTracerProvider({

logLevel: LoglLevel.ERROR

provider.register();

provider.addSpanProcessor(

new SimpleSpanProcessor:(
new ZipkinExporter({

tracing.js
1
2
3 const
4 const
5 const
6 const
7
8
9

10

1 1});

12

13

14

15

16

17

18

19 }

20 |)|
2%)5

O

Y §)
L

OpenTelemetry

)

serviceName: "getting-started”,

Initialized OpenTelemetry Tracer in
Node.js app

Configured Zipkin exporter to collect and
visualize trace data

Registered tracing provider with
ERROR-level logs for clean output

SimpleSpanProcessor batches and sends
trace spans to backend

N> Kasadara

Zipkin Q

dashboard-service: get /

78.901ms 1 53 9755e€803dda0f7258508605237¢a00
I =
~ v e >
oms. 78.501ms
- dashboard service: get | Zos0ims
dashboard-service: middieware - query 97208
dashboard-service: middieware - expressinit 388us

OUTPUT

Search by trace ID

= SPAN TABLE
dashboard-service get/
Soan 1D Parent
b2bb21435676ac2b none
Annotation ~
on: ns 789011
Start Time: 07129 12:01:44.776
oms Value Server Start
dashboard-service
07/29 12:01:44.855
78.901ms Server Finish

dashboard-service

Monitor the model in prometheus

‘Q‘%\

OpenTelemetry

Traces are found in the Zapkins

[SCTICM - insert metric at cursor

Graph Console

- + « Until » Res. (s) O stacked

Mor 021 22:06:51 GM
40
30
20
10

Mon, 15 Feb 2021 22:06:51 GMT
0 prometheus_hitp,_requests_fotali

o fiopath
tance: localhos{ 8080
promeihel

jobs

Remove Gra|

N> Kasadara angSmith

- : It provides detailed visibility into the
LangSmith is a developer tool designed internal steps of chains and agents —
for tracing, debugging, and evaluating including prompts, tool calls, and
large language model (LLM) applications. intermediate outputs.

Enables faster iteration and better
reliability for building complex Al
applications by showing how the model
"thinks."

Built to work seamlessly with the
LangChain framework, supporting both
local and cloud-based models.

WX

N> Kasadara

LangSmith Setup

Install Required
Packages

PS D:\CODE\AI_Python\POC> pip install langchair

O g

1 | import os

2 | from langchain.agents import initialize_agent
from langchain_community.agent_toolkits import load_tools
from langchain.llms import HUggingFacePipeLind

Import Modules

os.environ["LANGCHAIN_TRACING_V2"] = "true"
og.environ["LANGCHAIN_API_KEY"]
3 | os.environ["LANGCHAIN_PROJECT"]

Set Environment
Variables

"your-api-key"

"langsmith-poc"

Run the Agent

agent.run("PROMTPT") agent

WX

N> Kasadara

LangSmith Flow

Input Prompt Tool Execution Final Output
User sends a query to Agent calls external Agent returns a
the agent tools (e.g., math, response, all steps

search) visible

Agent Reasoning Trace Logged

Thought — Action —
Action Input

LangSmith captures full
flow in dashboard

WX

N> Kasadara IMPLEMENTATION

/ CODE \ > [List of tools the agent can use (e.g., search,

| calculator)

agent = initialize_agent(

tools, > [The LLM model (like OpenAl or HuggingFace

llm _ pipeline)

agent_type = strategy -
) agent_type Strategy used by the agent

response = agent.invoke(PROMPT)

. zero-shot-react-description - Most common; ReAct based on tool descriptions
prl nt(reS ponse) react-docstore - Uses ReAct pattern with a docstore tool
self-ask-with-search - Asks follow-up questions and uses search tools to find answers
conversational-react-description - Like zero-shot but supports memory & chat history
chat-zero-shot-react-description - Optimized for chat models like OpenAl ChatGPT.

WX

N> Kasadara

OUTPUT

o [&) LLMChain (2 ©) o)+ (&
Reset @
2 a Run Feedback Metadata

Input v

~ Agent Scratchpad

Parsing LLM output produced both a final answer and a parse-able action:: Answer the
following questions as best you can. You have access to the following tools:

Calculator(*args: Any, callbacks:
Union(i in_core.callbacks.base.BaseC: iander],
langchain_core.callbacks.base.BaseCallbackManager, NoneType] = None, tags:

opti = None, metadata: Oj Anyl] = None, **kwargs: Any) -
Any - Useful for when you need to answer questions about math.

Use the following format:

Question: the input question you must answer

Thought: you should always think about what to do

Action: the action to take, should be one of [Calculator]

Action Input: the input to the action

Observation: the result of the action

... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer

Final Answer: the final answer to the original input question

Begin!

Question: What is 2 + 2 ?
Thought: Hmm, let me think...
Action: Calculator

Action Input: 2 + 2
Observation: 4

—>

Waterfall View

Shows execution time of each component (LLMChain +
HuggingFacePipeline)

Helps identify latency bottlenecks in your chain

Agent Scratchpad + Prompt Format

Displays how LangChain uses structured prompts

Shows the format used by ReAct agents (Thought — Action —
Input — Observation)

Reasoning in Action
Real trace of the agent solving 2 + 2

Demonstrates LLM's step-by-step reasoning and tool use

N> Kasadara

CONCLUSION

OpenTelemetry

LANGSMITH OPENTELEMETRY COMBINED RESULT

Clear tracing of LLM Tracks system Full visibility from model Faster debugging,
reasoning and tool use performance and errors to infrastructure smarter optimization

