
LangSmith & OpenTelemetry

Observability in LLM 
Applications

LOGGING

TRACING
EXECUTION

TRANSPARENCY
Chinnasamy



Blind Spots in LLM Observability

OPAQUE DECISION 
PATHS

LLMs don't explain 
why they chose a 
specific output.

TOOL INVOCATION 
IS HIDDEN

External tools used 
in chains or agents 

lack visibility.

UNTRACKED 
PROMPT AND 

RESPONSE FLOW

Inputs, intermediate 
steps, and outputs 
often go unlogged.

NO INSIGHTS INTO 
ERROR

Failures and 
incorrect responses 
are difficult to trace 

or evaluate.



WHY OpenTelemetry and LangSmith 

 

LangSmith – LLM 
Debugging & Evaluation

● Purpose-built for LLM application 
tracing and evaluation

● Integrates with OpenTelemetry to 
track LangChain workflows

● Offers fine-grained insight into 
prompts, model responses, and tool 
usage

● Facilitates prompt engineering, 
performance tuning, and error 
analysis

OpenTelemetry – Unified 
Observability

● Open standard for collecting traces, 
metrics, and logs

● Vendor-neutral → no vendor lock-in
● Enables end-to-end visibility across 

distributed systems
● Supported by major cloud platforms 

(AWS, Azure, GCP)



OpenTelemetry

Modern applications are 
becoming increasingly 

distributed — spanning across 
microservices, APIs, and 

third-party tools.

PLANNING
A modern observability solution 
must:

● Capture logs, metrics, and 
traces

● Be language-agnostic and 
vendor-neutral

● Work seamlessly in 
distributed & GenAI 
architectures

CRITERIA
Traditional observability 

relies on fragmented logs 
and isolated tools.

METHOD
An open-source observability 
framework providing a unified 

approach to collect, process, and 
export telemetry data — enabling 

full visibility across your application 
stack.



OpenTelemetry Setup

Creation of docker container

Install of all necessary packages:

● Opentelemetry api
● exporter - otlp
● Sdk - metrics
● Trace - node



OpenTelemetry Workflow

Instrumentation
Code is wrapped to 
emit telemetry data

Exporting
Data sent to 

backend tools

Data Capture
Spans, logs, metrics 
collected at runtime

Processing
Collector enriches, 

batches, and routes 
data

Monitoring
You observe flows, 

errors, and latencies



How OpenTelemetry Captures System context

OpenTelemetry SDKs hook into frameworks (e.g., HTTP, gRPC, DB) and 
automatically attach system metadata to each span.

Instrumentation Hooks

Each request/operation carries context (like trace ID, user/session data) via 
HTTP headers (W3C Trace Context). This ensures continuity across 

microservices.

DARING

The OpenTelemetry Collector can be configured to inject additional 
metadata, such as host info, region, or deployment environment.

ANSWER

 Developers can manually add custom key-value pairs to spans/logs (e.g., 
prompt_id, user_type, agent_name) for LLM-specific context.

CONCLUSION



Implementation of OTel on projects

ANALYSIS TOOLSSETTING UP
Prepare your project and 

environment

TRACING
Track model inference and 

system behavior Visualize and analyze with 
observability platforms

1st 3rd 5th4th2nd

METRICS
Monitor resource usage and 

model performance

COMBINING MODEL WITH 
THE OTEL

Enable context tracking between 
services and model calls



Work Flow of Tracing using OTel

● Docker runs Zapkins to collect 
trace data.

● Zapkins server receives and 
manages trace data.

● Trace data is stored on file SSD 
(local storage).

● Traces module gets data from 
Zapkins server.

● Finally, it throws the result 
(outputs the processed trace).



Work Flow of Metric using OTel 

Prometheus Server: Pulls metrics from targets, 
stores them in TSDB, and exposes them via HTTP 

API.

Targets (Jobs/Exporters): Provide metrics over 
HTTP; Prometheus scrapes them at intervals.

Pushgateway: Allows short-lived jobs to push 
metrics; Prometheus pulls from Pushgateway.

Service Discovery: Auto-discovers targets using 
integrations like Kubernetes and file_sd.

Alertmanager: Receives alerts from Prometheus, 
manages routing, deduplication, and sends 

notifications (e.g., PagerDuty, Email).

PromQL: Query language for selecting and 
aggregating time series data.



Tracing the Model

● Initialized OpenTelemetry Tracer in 
Node.js app

● Configured Zipkin exporter to collect and 
visualize trace data

● Registered tracing provider with 
ERROR-level logs for clean output

● SimpleSpanProcessor batches and sends 
trace spans to backend



OUTPUT

Monitor the model in prometheus

Traces are found in the Zapkins



Built to work seamlessly with the 
LangChain framework, supporting both 

local and cloud-based models.

Enables faster iteration and better 
reliability for building complex AI 

applications by showing how the model 
"thinks."

LangSmith is a developer tool designed 
for tracing, debugging, and evaluating 

large language model (LLM) applications.

It provides detailed visibility into the 
internal steps of chains and agents — 

including prompts, tool calls, and 
intermediate outputs.

LangSmith



STEP 4 Run the Agent

STEP 2 Import Modules

STEP 3 Set Environment 
Variables

Install Required 
PackagesSTEP 1

LangSmith Setup



LangSmith Flow

Tool Execution
Agent calls external 

tools (e.g., math, 
search)

Final Output
Agent returns a 

response, all steps 
visible

Input Prompt
User sends a query to 

the agent

Agent Reasoning
Thought → Action → 

Action Input

Trace Logged
LangSmith captures full 

flow in dashboard

1 2 3 4 5



IMPLEMENTATION

agent = initialize_agent(
tools,
llm, 
agent_type = strategy

)

response = agent.invoke(PROMPT)

print(response)

 CODE List of tools the agent can use (e.g., search, 
calculator)tools

The LLM model (like OpenAI or HuggingFace 
pipeline)llm

Strategy used by the agentagent_type

STRATEGIES
zero-shot-react-description - Most common; ReAct based on tool descriptions
react-docstore - Uses ReAct pattern with a docstore tool
self-ask-with-search - Asks follow-up questions and uses search tools to find answers
conversational-react-description - Like zero-shot but supports memory & chat history
chat-zero-shot-react-description - Optimized for chat models like OpenAI ChatGPT.



OUTPUT

Waterfall View
Shows execution time of each component (LLMChain + 
HuggingFacePipeline)
Helps identify latency bottlenecks in your chain

Agent Scratchpad + Prompt Format
Displays how LangChain uses structured prompts
Shows the format used by ReAct agents (Thought → Action → 
Input → Observation)

Reasoning in Action
Real trace of the agent solving 2 + 2
Demonstrates LLM’s step-by-step reasoning and tool use



CONCLUSION

Tracks system 
performance and errors

OPENTELEMETRY
Clear tracing of LLM 

reasoning and tool use

LANGSMITH
Full visibility from model 

to infrastructure

COMBINED
Faster debugging, 

smarter optimization

RESULT


